Air-clad suspended nanocrystalline diamond ridge waveguides

Diamond Photonics Abstract:

A hybrid group IV ridge waveguide platform is demonstrated, with potential application across the optical spectrum from ultraviolet to the far infrared wavelengths. The waveguides are fabricated by partial etching of sub-micron ridges in a nanocrystalline diamond thin film grown on top of a silicon wafer. To create vertical confinement, the diamond film is locally undercut by exposing the chip to an isotropic fluorine plasma etch via etch holes surrounding the waveguides, resulting in a mechanically stable suspended air-clad waveguide platform. Optical characterization of the waveguides at 1550 nm yields an average optical loss of 4.67 ± 0.47 dB/mm. Further improvement to the fabrication process is expected to significantly reduce this waveguide loss.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement